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SUMMARY

In this article, we consider the application of three popular domain decomposition methods to
Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order
elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of
Smith, and the balancing method of Mandel applied to nonconforming elements are shown to
converge at a rate no worse than their applications to the standard conforming piecewise linear
Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the
existing theory for the conforming elements with only modest modification by constructing an
isomorphism between the nonconforming finite element space and a space of continuous piecewise
linear functions.

INTRODUCTION

We consider the convergence properties of domain decomposition methods applied to
Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order
elliptic problems. An isomorphism between the nonconforming finite element space with the
natural norm induced by the elliptic problem and a conforming piecewise linear space with the
H'-seminorm is constructed. Using the isomorphism, we are able to apply the existing analysis of
domain decomposition methods for conforming elements to nonconforming elements with only
modest modifications. As examples of this technique, we show that the operators arising in three
popular domain decomposition methods, specifically, the additive Schwarz method of Dryja and
Widlund [1], the vertex space method of Smith [2], and balancing method of Mandel [3], applied to
nonconforming finite elements have condition numbers that satisfy the same bounds as the ones
given in [4] and [5] for conforming finite elements.

The same technique was used in [6] and [7] to analyze the rate of convergence of balancing
domain decomposition and the standard additive Schwarz method for the dual-variable mixed finite
element formulation. Moreover, as a corollary of the analysis of Smith’s method for the
nonconforming spaces presented in this paper, we have a new bound for Smith’s method applied to
mixed finite elements.

*This work was supported in part by the National Science Foundation under Grant No. DMS-9112847.
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After the research for this paper was completed, the author was made aware of some related
work done concurrently by Sarkis [8]. In particular, the isomorphism used herein was independently
suggested by Sarkis for linear nonconforming elements. In [8], Sarkis constructs and analyzes
special coarse spaces such that when the overlapping additive Schwarz method is applied, the
condition number of the resulting operator is bounded by a constant times (1 + log(H/h))(1 + H/$)
in both two and three dimensions. Here H and h are the characteristic sizes of the subdomains and
mesh, respectively, and 6 is a measure of the overlap of subdomains. The notable characteristic of
Sarkis’ bound is that the constant is ihaependent of jumps in the coefficients across subdomain
boundaries. If the techniques of this paper were used to derive bounds that were independent of
the jumps in coefficients, the resulting bound would include one log factor in two dimensions using
(1, 9], but two logs in three dimensions using [5, 10, 11].

The remainder of this paper is divided into six sections. In the next section, we set some
notation, formulate the nonconforming problem, and construct an equivalent representation in
terms of the nodal values. In Section 3, we construct an isomorphism between the nonconforming
space and a continuous space of piecewise linear functions. The isomorphism is used in Section 4 to
analyze the rate of convergence of the Dryja-Widlund additive Schwarz method. In the last three
sections, we consider the substructuring methods of Smith and Mandel applied to the
nonconforming problem.

PRELIMINARIES

We consider the following self-adjoint, uniformly elliptic problem for p on the polygonal domain
2 C R", n =23, with boundary 9Q:

—V-AVp=f in Q, p=0 on 00, (1)

where A is a uni‘forrrtnlry:bositive definite, bounded, symmetric second order tensor, and f € L?(Q).
The uniform ellipticity of (1 ) implies the existeuce of positive constants c,, ¢* such that the
following bound holds: o '
WETE<ETA(R)E < c€TE VeEe R, Vr e Q. . (2)

In order to set a length scale, we assume that the diameter of  is one. We introduce a two level
quasi-regular triangulation of £: a division first into subdomains {€,;}¥, with diameter O(H), and
a refinement of the first into elements with diameter O(%). Following [12], define the scaled Sobolev
norms

1
ull} g, = Jullg + 2 ”“”on» ll3 /2,00, = [} 2,00, +ﬁ”“”g,an,

where
”U“(?J,n.v :/Q !“(-’”)Pdl'a ||“||oan —/ u( | ‘15,
u(t) —u(s) *
2 = Vul(z)|? dx / / dtd
l“h,n. /ﬂ. | Vu(z)|* da, |“|1/2an o, Joa, S.

It_sln

Let V() be a finite dimensional nonconforming finite element space of Lagrange-type defined
subordinate to the triangulation 7 that vanishes at all degrees of freedom on 9Q. Since N () is of
Lagrange-type, the elements in A/(£?) may be expressed in terms of a nodal basis, and we may
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identify an element in A/(2) with the values it attains at the nodal points. For convenience, we
assume that the subdomains and the elements are triangular in two dimensions or tetrahedral in
three dimensions. Extensions to other shape regular decompositions are straightforward.

We consider the problem of finding p, € A'(Q) such that

d(pr, q1) = /Q fondz Yo, € N(9), (3)

where d is the generalized Dirichlet form:

d(pha (Ih) = dQ(p/n (]h), dﬂ'(phv {Ih) = Z Avph * V(]h d.’L'

€T, rc T

We now introduce several conventions used in this paper. In this paper, we shall only be
concerned with the solution of this finite dimensional problem, and will henceforth drop the “h”
subscript.

Having defined a parent finite element space of functions A'(2) with a nodal basis and a set
Q' C Q, we will simply write X'(Q2') for the restriction of X'(2) to &, i.e.

X(Q) = {da | 6 € X (Q)}.

By an abuse of notation, we consider an element ¢ € X'(Q') also to be an element of A'(2) by
setting ¢ to zero at all nodes outside of (V.

We will write @; ~ Q; if two quadratic forms @; and Q3 with the same domain D are
equivalent, i.e. if there exists constants ¢;, ¢y > 0 such that

C1Q1(¢7¢) S QZ(¢7¢) S c2Q1(¢a ¢)7 v¢ € D

In what follows, C will be used to denote a generic constant that may not be the same from one
line to the next. This constant, as well as the constants involved in the equivalence of quadratic
forms, will always be independent of & and H, but can depend ou the constants in (2), the shape
regularity of the subdomains, the degree of the nonconforming finite elements, and the regularity of
the triangulation.

To conclude this section, we prove a lemma that provides an equivalent quadratic form for d(-, -)
in terms of the nodal degrees of freedom. The proof of this lemma was suggested by Joseph Pasciak
in the context of the mixed finite methods considered in [6, 7).

o~

Lemma 1 Let Q' C Q) be the union of elements of T. And let A(x) = a(z)A(x), where a is a
positive, piecewise constant function with value a, on 7 € T. Then for every p € N (),

do(pp) = 3 ar["7H" ST (plna) = p(ny))*. (4)

reT, naodes :
TCQ i,y €7

The constants that appear in the definition of the equivalence do not depend on the constants in (2),
but rather on constants that arise when A is replaced by A.

Proof. The local kernel of d,(-,-) in A(7) is exactly the constant functions on 7 since for
pEN(r)
d:(p,q) =0 VYgeN(r), < Vp=0.
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Primary Vertex
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Figure 1: Refinement of the 2D P-1 element and a partial refinement of the 3D P-1 element.

Hence, (d.(-,-))"/? is a norm on A(7)/IR. Since all norms are equivalent on finite dimensional
spaces, we see that

d.(p,p) = a || Y (p(m) — p(ny))?,

nodes :
ni,n; €7

by a simple scaling argument. The proof is completed by summing over the elements of 7 in {}'. O
A CONFORMING EQUIVALENCE

In this section, we construct a conforming space that is isomorphic to N(£?) using the techniques
in [6, 7) and recall some basic properties about the isomorphism.

Given an element 7 € 7, let 7, be a subtriangulation of 7 such that the vertices of the
subtriangulation include the vertices of 7 and the nodal points in 7 pertaining to the degrees of
freedom of A'(7). Every element in the new triangulation should have at least one vertex that
corresponds to a nodal point of /(7). Moreover, the subtriangulations should be constructed in
such a way that the union of subtriangulations gives rise to a refined quasi-regular triangulation of
Q which we denote by

7= 7..

A vertex of 7 will be called primary if it was a nodal point corresponding to a degree of freedom of
N (Q); otherwise, we call the vertex secondary. We say that two vertices of the triangulation 7 are
adjacent if there exists an edge of T connecting the vertices. An example of the subtriangulation of
the P-1 element that has nodal degrees of freedom at the center of its edges (faces) is given in
Figure 1.
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Let U, (£2) denote the space of continuous piecewise linear functions subordinate to the
triangulation 7 that vanish on 9Q. For ' C (2, a union of elements, define U, (') by restriction, i.e.

U;L(Q’) = {‘ttml I u € U;L(Q)}

Since the functions in U, () are naturally parameterized by the values they attain at the
vertices, we can define a pseudo-interpolation operator 7% into U,(') for any function ¢ defined at
the primary vertices contained in §)' by

(0, if z € 00V NOQY,
#(z), if z is a primary vertex not in o N oQ;

The average of all adjacent primary vertices on the boundary
of (V. if z is a secondary vertex in Q' \ 9%;

The average of all adjacent primary vertices, if z Is a secondary
vertex in the interior of {';

The continuous piecewise linear interpolant of the above vertex

{ values, if = is not a vertex of T.

Since 7% is well defined for any function defined at the primary vertices, by an abuse of notation,
we can understand 7% both as a map from A(€') into U,(€') and a map from Un(9') into itself.
For any €' that is the union of elements in 7, let Un(€Y) C Up(§V) denote the range of 7% that is,

On(Q) = {¢ = %, e N(Q)}.

We now prove that 7% : M(Q) — (7’5,(QI) preserves the norm induced by the bilinear form dq (-, )
on N (') and the H'-seminorm on U,('). Since 7% is a bijection between A (€)') and U,(Q') by
construction, this proves that A (€) and U,(Q') are isomorphic.

Theorem 2 Let Q' C Q be the union of elements. Then for all p € N,
da(p,p) = Iiﬂlpr‘f,n,. (6)

Proof. This proof is an expanded version of the proof given in [7]. Recall that for ¢ € Un('),

B~ S P (d(w) — b)) (7)

rE ?' vertices :
TCQ U, U, €7

By virtue of Lemma 1 and Equation (7), it is enough to show that

DR LR DR 7 CH RS CH) D DI L D (Z%)(vs) = (@¥P)(v;))*. (8)

reT, nodes : TE 'f’, vertices :
T ni,n, €7 rc v,y €T

Since vertices of 7, contain the nodal points of 7 and p = 7% at these points, we have

T ) -pm)sCcy Y ((T) () - (I%) (),

nodes : T€T, vertices:
ni,n; €7 vy, €T
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where the constant is controlled by the regularity of the subtriangulation. Hence, by summing over
the elements of 7 in (¥, we conclude that the right hand side of (8) dominates the left hand side.
To prove that the left hand side dominates the right, we note that the differences in the right
hand side are of three types: the difference at two primary vertices, the difference at two secondary
vertices, and the difference at a pnmary and a secondary vertex. Smce p and I%p agree at primary
vertices of 7, the difference at two primary vertices occurs as a term in the left hand side. For two
secondary vertices v, v, in an element 7 € T containing a primary vertex v,, we see that

(@) @) = () (v)” < 2((Z%) (00) = (Z) (0)) "+ 2((F) (02) = (2) ()"

Hence, it is enough to bound the difference at a secondary and primary vertex by terms in the left
hand side of (8).

Let v,4; be a secondary vertex with adjacent prlmary vertices vy, ..., v,, and let p; = p(v;).
Noting that for 7 = 1,.

TR er=r (@) ) = S @) )= S

7=1
we see that

2
. . ) n R
«ﬁwmm—MWwwzﬁ(gm—m)s%;m—m%
J= i=
by the Cauchy-Schwarz inequality. The proof is completed by summing over all triangles of 7. The
number of such terms, and hence the constant in the bound, is controlled since the regularity of the
~ mesh implies that there is an a priori maximum number of adjacent elements that can share a
secondary point. 0
Using the techniques in the proof of Theorem 2, the following lemma is easy to prove.

Lemma 3 There exists a constant C depending only on the reqularity of the triangulation T and
the degree of the nonconforming space such that for any Q' C Q, the union of elements of T,

1Tlqr < Clolear Vo€ Un(Y), k=0,1. (9)

THE DRYJA-WIDLUND ADDITIVE SCHWARZ METHOD

The presentation in this section and the next follows the treatment of Schwarz methods given by
Dryja and Widlund in [4]. We concentrate only on the additive Schwarz methods with exact solves.
The convergence rate of the multiplicative Schwarz method may be estimated in terms of the same
quantities (see [13]) and is easily worked out. Extensions to inexact solves are likewise direct.

Recall that the additive Schwarz method with exact solves for (3) is completely determined by a
decomposition of the finite element space N'(Q) = My + M, + ... + Ny. For each subspace N;,
define an operator P; : N(Q) — N by

d(Pip,q) = d(p.q) Yq€ENM. (10)
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The additive Schwarz algorithm with exact solves for (3) involves the solution of
~ M M
=0 1i=0

where f; € N, is defined by
df) = [ fadz Vg€ N,

Abstract bounds on the condition number of P have been derived in terms of two quantities, Cy
and the spectral radius of £, which we now define. Let Cj be a constant such that for every p € A/
there exists a representation p = Z?io p: with p; € N; satisfying

M
Z d(pi,pi) < Cod(p,p). (12)

1=0

Let p(€) denote the spectral radius of £ = {¢;;}, the matrix of strengthened Cauchy-Schwarz
constants; that is, ¢;; is the smallest constant for which

ld(pi, p)| < e5d(piy i) d(ps, p;) Vpi € Ni, Vp; € N, 6,5 > 1. (13)

The next theorem, due to Dryja and Widlund [14], bounds the condition number of the additive
Schwarz method in terms of Cy and p(&):

Theorem 4 The eigenvalues and the condition number x(P) of P satisfy
Amin(P) 2 €5y Amax(P) < (p(€) + 1), &(P) < Co(p(€) +1). (14)

To construct the decomposition of A(2) to be used in our application of the additive Schwarz
algorithm for nonconforming elements, we first create an overlapping decomposition of the domain
1 by extending each subdomain Q; to a larger region Q! which is also the union of elements of 7.
We characterize the extent of the overlap of the partition {}¥, by §, where

§= _1PinM dist(99; \ 90, 90\ 092).

1 Teey

The decomposition {2}, gives rise to a natural decomposition of A’(Q) by letting V; C N(Q)
denote the set of functions that vanish at all nodes in the closure of (2 \ /). In order to provide a
mechanism for global exchange of information between subdomains so as to enhance the rate of
convergence, we also use a low dimensional space defined by

No=1{peNQ)|p=1"¢,¢ € Un())},

where T% is nodal interpolation into M(§), and Uy () is the space of continuous functions that are
linear on each subdomain ;. Note that the subspaces for the nonconforming space are exactly the
nodal interpolants of the standard decomposition of the conforming space U, (), namely,
Un(£2) N Hy(Q5).

In the following lemma we recall the crux of the proof due to Dryja and Widlund (Theorem 3 of

[4]) that the Schwarz method applied to the conforming Galerkin discretization has a condition
number that is O(1 + (H/$)).
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Lemma 5 For every ¢ € Uy(Q), there exists a decomposition ¢ = M., i with ¢g € Un(),
¢ € Un(Q) N HY(Q), 1 <1 £ M and a constant C independent of h, H, and §, such that

M H
Sl < ¢ (1456 (15)

We now show that the application of the Schwarz method to the nonconforming space converges
at the same rate.

Theorem 6 The condition number k(P) of the additive Schwarz operator P defined by (11) induced
by the decomposition N (1) = No + ...+ My of the nonconforming finite element space satisfies

,;(P)gc(u%).
The constant C is independent of h, §, and H.

Proof. The verification that the largest eigenvalue of P is bounded by a constant is standard.
Since d(p;,p;) = 0 for p; € Ni, p; € N with ;N = #, P may be written as the sum of an a
priori bounded number of disjoint projections. Since projections have unit norm, a constant bound
on the largest eigenvalue of P is immediate. See, e.g., Lemma 3.1 of [2].

For p € N (), let (jﬂp)i denote the decomposition of % € U,(Q) arising in Lemma 5, and set
pi = IN((iQp)i). It is easy to check that p; € N and p = s>M, pi. Using Theorem 2 and Lemma 3,
we see that for: = 0,..., M,

d(pi,pi) < CITNT)i)2 o < Cl(T)ilia:

Summing and applying Lemma 5 and Theorem 2, we conclude that

M M _
S d(pip) SCY (T p)lia < C (1 + %) \T%llq < C (1 + %) d(p, p)-

1=0 1=0

Hence, Co in (12) is bounded by C (1 + H/$). An application of Theorem 4 completes the proof. O

SUBSTRUCTURING DOMAIN DECOMPOSITION

The remaining two methods considered in this paper are domain decomposition methods applied
to a reduced problem involving only the degrees of freedom on the internal interfaces of subdomains
T = UM, 80, \ 0Q. Following [4], we recall the construction of the reduced problem. Since N () is
of Lagrange-type, we may associate with functions p,q € N (Q) the vectors of values they attain at
the nodes. Let z and y denote the vectors of nodal values of p and ¢, respectively, and ) 40) the
subvectors of degrees of freedom in ;. Let D' denote the local stiffness matrix arising from
dq.(-,-), and let D denote the global stiffness matrix, i.e.

ST o g AT v gs
DT DOY® = dg (p,q), «"Dy= Y 2 DY =d(p,q)
i=1,...,.M
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For each subdomain, we can partition the degrees of freedom 2 into two sets, the ones related to
nodes on the boundary of {2; denoted xg), and the ones corresponding to nodes in the interior of {;
denoted m(;). Such a partitioning induces a partitioning of D) given by

gNT i ' i
oo~ () (5 o) ()
Tp Dig Dpp YB

The interior unknowns of each subdomain may be eliminated in terms of the boundary unknowns.
The resulting matrix, S, is the Schur complement with respect to the interface unknowns defined by

)T i), G ; ; ' )\=1 (i
L Sys = 2§ $0yY),  where SO = Dg} - DI (DY]) DR
i=1,.. .M

It will be convenient to work with the bilinear forms induced by S and S, and so we define
)T o) G
s(p,q) = z5Syp, si(p,q) = .'L'(B) S(’)yg).

For a function p € N (Q), we note that unlike conforming spaces, the restriction of p to the
interfaces, pir, is not solely determined by the nodal values on I' since A(£2) is nonconforming.
Hence, we are careful to understand N(T') as a subset of N () parameterized by the nodal values
on I' consisting of the discrete harmonic extension of the nodal values to the interior of the
subdomains. Specifically, if p € M(T') has the vector of nodal values xg) on 0Q;, then ppq, is the

function associated with the vector of nodal values (mgi), mg))T where J;(Ii) satisfies
iy (3) ()
Dgl)“'(l = —D”;:E(B).
A linear functional g is easily constructed such that finding p € M(T') satisfying

s(pq) = glq) Yq € MT) (16)

is essentially equivalent to (3).

We now construct a conforming space of functions that is isomorphic to AM(I') with the norm
induced by the bilinear form s(-,-). Let U,(T) denote the restriction of U,(Q) to UM, 3Q;. Since
functions in U,(T") vanish on 9 (because functions in U,(2) do), functions in U,(T') can be
parameterized in the natural nodal basis by the values they attain at the vertices of 7 in T
Analogous to (5), for I the union of edges (and faces in 3D) in the triangulation 7 and ¢ a
function defined at the primary vertices in [, define a pseudo-interpolant Z7'¢ € Un(T") by

(0, if z € IV N ON;
¢(z), if z is a primary vertex not in IV N 99,

ZV¢(z) = { The average of all adjacent primary vertices on I if z is a 17
¢ g
secondary vertex on I[;

The continuous piecewise linear interpolant of the above vertex

values, if z 1s not a vertex of 7.
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Note that if " = 9%, then I'¢ = (jﬂ'cz)lagr for all ¢ in A(€) that agree with ¢ at the nodal
degrees of freedom of 9V’

Since I' is well defined for any function defined at primary vertices, by an abuse of notation, we
can understand 7' both as a map from A(I") into U,(I") and a map from U, (I") into Ux(I"). We
denote the range of I by _ 7

On(I") = {(T" )l € Un(I")}-

The equivalences in the following lemma are a combination of the standard trace theorem and an
extension theorem for U, (9%). In particular, the proof of this lemma given in [6] shows that the
space U, (€) is rich enough to inherit the Extension Theorem of Widlund [15] from Uy ().

Lemma 7 For ¢ € (7;,(80,-),

Bllj200; > inf  [élha,  |8hyzee, ~ inf  [dlia. (18)
¢ € Un(f) % € Un()
dlon, = ¢ dlon, = ¢

Additionally, there exists a constant C independent of mesh parameters such that
1P%@lxon, < Clélkon, Vo€ Un(d), k=0,1/2. (19)
The following theorem plays the role of Theorem 2 for the interface problem. |
Theorem Si:fF'br all p € N(I), |
| ” si(p,p) ~ |fm'l’|$/z,gn,- , (20)

Proof. By a direct computation followed by an application of Theorem 2 and Lemma 7 noting

that U, (Q) = Z%(WN (), we see that

~ o~ Tof i~ TO,
silpop) = nf do (P F) = ol T2 a, = 1T7%pl3/5.00-
P]au =Ppi .;)an, =Pp

SMITH’S VERTEX SPACE METHOD

Smith’s vertex space method [2] is an additive Schwarz method applied to the interface problem
(16). The decomposition of M(T') is constructed slightly differently in two and three dimensions. In
both cases, we first partition I' into overlapping subsets based on, its decomposition as the boundary
of subdomains. In two dimensions, for each vertex V; of I', let Fb, denote the set of points on I’
that are less than a distance § from V. For each ed&e E; 0{ T, let T} denote the interior of the
edge F;. In three dimensions, for each vertex V;, each edj:,e E;, and each face Fy of T, define I"5
above, let I‘é" denote the interior of the face F, and let I’b denote the set of all points in strips of
width é on all faces which share the common edge E;.

Understanding the set of faces to be empty in two dimensions, the decomposition of I' into
subsets induces a decomposition of M(I') by considering

NI)y= 3 N(IY),

Ge{H E,V, Fi}
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where for G € {E;,V;, Fi}, N(I'§) C NM(T) are those functions that vanish at all nodal points on T’
that are outside of the set 'Y, and N (I'¥) C M(T) are those functions that are the nodal
interpolant of the restriction to I' of continuous functions that are linear on each subdomain Q; and
vanish on 9f.

The following lemma is the crux of the analysis of Smith’s method by Dryja and Widlund [4] for
conforming elements.

Lemma 9 For every ¢ € Uy(T'), there exists a decomposition

¢ = > dc

Ge{H,E;,V; Fy}

with ¢g € Uy(T), g € Un(T§) = Un(T) N HYTE) for G € {E;,V;, Fi} such that

> Z|¢Cll/209 < C(1+log (H/4)) Z|¢|1/28Q (21)

Ge{H.E.V, Fy} i=1
The constant C is independent of the choice of ¢, and the mesh parameters h, H, and 6.

Let Pr : M(T') —» N(T) denote the additive Schwarz operator defined by (10) with the bilinear
form d(-, ) replaced by the interface form s(-,-) and the decomposition of N'(£2) replaced by the
decomposition of M(I') described above. We now prove that the condition number of AT for the
nonconforming space has the same bound given in [4] for the similar operator for the conforming
finite element space.

Theorem 10 The condition number of the additive Schwarz operator Pr for Smith’s decomposition
for the nonconforming finite element discretization satisfies

K(Pr) < C((1 + log (H/8))?. (22)
The constant C is independent of the mesh parameters b, H, and 6.

Proof. As in the proof of Theorem 6, Pr may be written as the sum of an a priori bounded
number of disjoint projections, and so the largest eigenvalue of Pr is bounded by a constant.

To bound the smallest eigenvalue, we also proceed as in the proof of Theorem 6. For p € A(T),
set pg = IN((IF[)) ), G € {H,E;,V;, Fi.}, where T is interpolation at the nodes on T' into N(T')
and (Zp)¢ is the decomposition of I'p € U,(T) that arises in Lemma 9. Since Z'p and p agree at
the nodal degrees of freedom of N(T'), and

Ny =¥ (Un(T)), N(IF) =TV (ULIF)) VG e{E,V,, F},
it 1s easy to check that

p= > e
Ge{H ,E, V; F.}

Working one subdomain at a time and using Theorem 8 and Lemma 3, we see that for G = H and
for G € {E;,V;, F;} such that T¢ N 9Q; # § we have

si(pc,pa) < le‘m‘p(_;]f/«zm, = lem frl’ 11/2 o, < C |(frl’ 6|1/2 an, - (23)
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Assume that we can prove that there exists a constant independent of h, H and é such that
Z |ir1’|1/2 o, < C Z 1%} /200, VP € MT). (24)

Then by summing (23) over subdomains and subspa.ces, noting that s;(pg,pg) = 0if TS N AN =0,
and applying Lemma 9, Equation (24), and Theorem 8, we see that

>, s(pa,pc) S Z (pe,pe) < C (1 + log ( H/é) Zﬁfph/m

Ge{H,E.,V; Fy} Ge{H E.V, F}i=1

M ~
< C(1+log(H/8)) 3 Ilan'plf/z,an,- < C(1 +log (H/8))* s(p,p)-

=1

The proof of the condition number bound now follows from an appllcatxon of Theorem 4, and we

are only left to verify (24). :

Define a pseudo- mterpolant Iﬂ\r N(Q) — U,,,(Q) by (5) noting that the boundary of Q\ T is
dNUT. Using the techniques in the proof of Theorem 2, it is easy to show that there exists a
constant C} dependmg only on the regularity of the mesh and the degree of the nonconformmg

space such that

Ellﬂ\ plia, <Clzllﬂplm Vp € N(Q).

1=1
By Lemma 7, for each p € NM(T') there exists an extension p® € A'(Q) that agrees with p at the
nodal points on I' such that

Z%F 2 o < ClE Ml ppn, i=1,..., M.

Combining these results after another application of Lemma 7 with ¢ = I'p, we conclude that

Zifph/zaﬂ <CZ|IQ\ |1n <CZ‘IQP |1Q <C110 P|1/239,

=1

which verifies (24). O

In [6], the interface form arising from the discretization by mixed finite elements of (1) was
shown to satisfy Theorem 8 with N( ) replaced by the appropriate space of interelement
multipliers. Hence, the proof given above is applicable to discretization by mixed finite elements,

and we arrive at the following corollary.

Corollary 11 The application of Smith’s decomposition method to the dual-variable mized finite
element formulation discussed in [6] results in an operator whose condition number grows at worst

like O((1 + log (H/6))?).

BALANCING DOMAIN DECOMPOSITION

B ]

As the final domain decomposition metliod considered in this paper, we investigate the balancing
domain decomposition method of Mandel [3] applied to nonconforming finite elements. The method
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involves the iterative solution (usually by conjugate gradients) of (16) preconditioned by the
balancing preconditioner described in Algorithin 1 below. Each iteration involves the solution of a
local problem with Dirichlet data, a local problem with Neumann data, and a “coarse-grid”
problem to propagate information globally and to insure the consistency of the Neumann problem.
The theory and practical performance of balancing domain decomposition for the standard
conforming Galerkin finite element method and mixed finite element method are the subjects of [5]
and [6], respectively. As in previous sections, we will deduce the convergence theory for the
nonconforming spaces from the conforming theory in [5] using the isomorphism introduced in the
fifth section of this paper.

One remarkable property of balancing domain decomposition is that the bound on the condition
number of the preconditioned operator is independent of jumps in coefficients across subdomains.
Specifically, let the tensor A in (1) be written as A(z) = a(z)A(z), where « is a positive function
that is piecewise constant with constant value a; on €;. The uniform ellipticity then implies that
there exists positive constants ¢.,c* such that

Gt TE < ETA(2)E < TaitTE¢ VE€ R, Vz e (25)

The bound on the condition number of the operator that arises in balancing domain decomposition
will depend on ¢, and ¢* but will be independent of «; and ¢, and ¢ in (2).

Following Mandel’s original exposition in [3], we now recall the balancing preconditioner in terms
of matrices. A equivalent variational presentation is given in [6]. By an abuse of notation, we use
the same symbol to denote an element in A(T') and its associated vector of values attained at the
nodal degrees of freedom.

The balancing preconditioner is parameterized by two sets of matrices, a set of weighting
matrices {W;}, and a set of kernel generators {Z;}*,. The weighting matrices
Wi : N(0§);) — N(0%) are chosen such that they form a decomposition of unity on M(T'), i.e.

M
Y NWiNTp=p VpeNMT),

=1

where N; denotes the canonical inclusion mapping N; : N(99;) — N(T') by extending elements of
N(0%;) by zero at all other degrees of freedom. A prescription for the weighting matrices that
guarantees a convergence bound independent of coefficient jumps between subdomains is given in
Lemma 12 below. For each subdomain §;, let n; = dim(N(9€)), and select an n; x m; matrix Z; of
full column rank with 0 < m; < n;, such that

KerS; C RangeZ;, 1=1,...,M. (26)

For the scalar, second order, elliptic problems we consider in this paper, KerS; is empty if there is
Dirichlet data imposed on any part of 9Q; N dQ, otherwise it is the set of functions that have the
same value at all the nodes on 9Q;. From the kernel generators, we construct a “coarse space”,

N € M(I), defined by

M
My ={peNT):p= ENiVViZ,Z € RangeZ;}.

i=1

We say that ¢ € M(T) is balanced if it is orthogonal to Ajy; that is,

ZIWINIg=0, i=1,...,M. (27)
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The process of replacing » by a balanced ¢ = r — Sw, w € Ny, will be called balancing and involves
solving a “coarse grid problem” over the space My described in (28) and (29) below.
The action of the balancing preconditioner M, is defined by the following algorithm.

Algorithm 1 Given r € N(T), compute M ir as follows. Balance the original residual by solving
the auziliary problem for unknown vectors A; € IR™,

ZIWINT(r SZNWZ/\) 0, i=1,...,M (28)
1=1
and set M o , , o
g=r—SY NW,Z;%;, q=WINlq, i=1,....M. (29)
1=1

Find any solution u; € N(9Q;) for each of the local problems
Siu; = qi, i=1,..., M, (30)

balance the residual by solving the au:m'lia.ry problem for p; € IR™,

ZTWINT(r 52 NW,(u; + Zipj)) = i=1,...,M, (31)
1=1
and set ,
Mbalr —ENI/V(U,+Z/L) 7 (32)

=1

If some m; = 0, then Z; as well as the block unknowns j; and A; are void and the j-th block
equation is taken out of (28) and (31).

In [3] it was proven that Algorithm | implements a well defined operator that is symmetric and
poﬁslrtflvviaﬁdeﬁnlte An abatract_ﬂbgund on the condition number of M, 1S was also given. We will use

the following lemma proven in [5] to determine a bound on the condition number of the
preconditioned system for the application to the nonconforming discretization.

Lemma 12 For subdomain §;, define the weighting map W; as multiplication of the nodal values
such that for any p; € N(9Q;) and each nodal point v € 98,

oy

(Wipi)(v) = —=—— pi(v)- (33)
>
{7m.€99Q,}
Assume that there exists a« number R so that
1 1
;SJ'(N}‘NI'[),',N]TN,'[M) S (Y_ R Si(Pi,'I’i) (34)
J 1

foralli, j =1,..., M and all p; € N(95Y;) that are orthogonal to the range of Z;. Then there erxists
a constant C not dependent on h, H or R, so that the condition number k(M }S) of the
preconditioned system satisfies

k(M1S) < C R.
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Since most nonconforming methods, like the mixed finite elements considered in [6], do not have
nodal degrees of freedom at vertices in two dimensions and vertices and edges in three dimensions,
the analysis of [6] is directly applicable to the nonconforming case. However, in keeping with the
philosophy of this paper, we will allow vertex and edge degrees of freedom and will deduce the
general nonconforming theory from the conforming theory. The following definitions and lemma
from [5] will provide the essential conforming theory that we need for the nonconforming case.

Definition 1 Any vertez, edge, and, in the 3D case, face, of the interfaces between subdomains
{Q;} will be called a glob. A glob is understood to be relatively open; for ezample, an edge does not
contain its endpoints. We will also identify a glob with the set of the degrees of freedom associated
with it. The set of all globs will be denoted by G.

Definition 2 For a glob G, define the selection operator Eg : U, (T') — U(T) as follows: for
¢ € Up(T), Eg¢ is the unique function in U, (') that has the same values as ¢ on the degrees of
freedom in G, and all other degrees of freedom of Fg¢ are zero.

Note that the union of all globs disjointly cover the set of all degrees of freedom of U,(T'), and
the mappings Eg are projections that induce a decomposition of unity on U, (T), Z Eq;=1
Geg

Lemma 13 There exists a constant C such that for all p; € N(9S;) that are orthogonal to the
range of Z; and for all globs G € 0, N IQ,

|EGfBQ'Pi|f/2,an, <C(1+ 108'(H/h))2ﬁm'¢|¥/2,an.-

Proof. The proposition follows from Lemmas 3.7, 4.6 and 5.1 of [5]. O
We now prove a bound on the condition number for the preconditioned system in balancing
domain decomposition for nonconforming elements.

Theorem 14 The interface operator S preconditioned by the balancing preconditioner My, defined
in Algorithm 1 with weighting maps defined in (33) has a condition number k(M)S) satisfying the
bound

k(M) S) < C(1 + log (H/ 1)) (35)

in both two and three dimensions with the constant C independent of h, H, and a;.
Proof. By tracing back the dependence on the coeflicients, it is easy to prove the following

refinement of Theorem 8§: _
si(p,p) = | Mpl: 00, VP € N(OD), (36)

with equivalence constants that no longer depending on ¢. and ¢* in (2), but only on &, and ¢* in
(25).
For p; € N(9%;), we may decompose NJ»TN,p,- as the nodal interpolant of globs:

N}‘N,'pi = ( Z I[Jﬂ\f (EG‘IVOQ'[),')) .
|95Y;

GCoqQ;
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Let |pi|%, = si(pi, pi). Considering those p; that are orthogonal to the range of Z;, working one glob
at a time, and using (36), (19), Lemma 13 and (36) in that order, we have

|IIN(EGiBQ'Pi)|§, < ajcljm’EGjm'Pilf/zaQ, < ajCIEGfm‘Piﬁ/z,an, (37)
< o;C(1 +log (H/R) | pill 12,00,
<

o
jC(l + log (H/h))2|Pi|§.-'

By the construction of the decomposition, there is an a priori maximum number of globs that
intersect 69; N 8Q;. Summing over such globs, we conclude that

5(NT Nipi, NT Nipi) < =LC(1 + log (H/ 1) si(pi, i)
The proof is completed by appealing to the bound in Lemma 12. O
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